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An in situ AI-AI3Ni functionally gradient material (FGM) was produced by centrifugally 
casting an AI-20 mass% Ni alloy into a thick-walled tube. Four specimens, 90 mm long, with 
rectangular cross-sections (width x thickness) of 6 x 6, 6 x 5, 6 x 4 and 6 x 3 mm 2 were 
machined from the tube such that the thickness direction of the specimens was in the radial 
direction of the tube. The microstructure of the FGM tube consisted of granular morphology 
AI3Ni as a second phase distributed within the aluminium matrix with an increasing volume 
fraction gradient from the inside to the outside of the tube. Thus, the thicker the specimen, the 
greater was the composition gradient and the thinner the specimen, the greater was the 
volume fraction of AI3Ni. The dependence of the Young's modulus and internal friction on the 
composition gradient of the FGM was determined by a flexural forced-resonance technique 
from the resonant frequency and the resonance peak width, respectively, as a function of 
nominal specimen thickness. The Young's modulus of the AI3Ni second phase was determined 
from a correlation plot of assumed AI3Ni Young's modulus values against the calculated 
resonant frequency values corresponding to the associated FGM Young's modulus values. The 
latter were calculated using a rule of mixtures with a fixed matrix Young's modulus and a 
gradient volume fraction of AI3Ni for each specimen thickness. By plotting the experimental 
FGM specimen resonant frequencies on this plot, the average AI3Ni Young's modulus was 
found to be 140 GPa. The Young's modulus of the FGM was found to vary between 81.5 and 
1 00.8 G Pa across the 6 mm tube-wall thickness from the inner to outer surface, reflecting the 
1 5.2 and 43.2 vol % AI3Ni second phase, respectively. The measured internal friction increased 
with the volume fraction of AI3Ni, and owing to the relatively large AI3Ni particle size, was 
thereby dependent on the resultant increase in the second phase-matrix interface number 
density rather than the dislocation density. 

1. Introduct ion 
Intermetallic compounds are expected to exhibit uni- 
que combinations of mechanical, magnetic, electrical, 
and chemical properties, etc. However, the inherent 
brittleness of intermetallics prevents their commercial 
usage. Recently, the concept of a functionally gradient 
material (FGM) has been proposed for refractory 
materials [1]; a FGM is a kind of composite material 
that has a composition gradient in one direction, 
which is optimized for a specialized function (e.g. in 
the thickness direction). Thus, the idea need not be 
limited only to a refractory material, but applied also 
to materials for electrical and chemical applications. It 

is proposed that a new FGM be fabricated in order to 
benefit from the improved properties of intermetallics 
by minimizing the problems associated with their 
brittle nature. 

One of the most well-known intermetallic com- 
pounds is A13Ni, and A1-A13Ni eutectic alloys have 
been used as a model material to examine the struc- 
ture and properties of unidirectionally solidified rein- 
forced material. The morphology of the A13Ni second 
phase changes from granular to fibrous depending on 
the solidification rate [2]. Based on these results, the 
feasibility of using A13Ni phase-distributed aluminium 
alloys as the basis of a FGM has been investigated. 
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Considering the A1-Ni phase diagram, molten alloys 
containing less than 30 mass % Ni can be used with 
the centrifugal casting method [3] to produce a thick- 
walled F G M  tube. The intermetallic compound A13Ni 
is initially nucleated from the molten hypereutectic 
alloy containing 5.7 mass % Ni alloy. As the density of 
A13Ni is relatively high compared with the melt dens- 
ity, a graded radial distribution of the A13Ni phase 
within the tube cross-section is obtained. This graded 
distribution is caused by the differential centripetal 
forces experienced by the phases present, which de- 
pend on the phase density. 

The potential uses of metal-intermetallic FGMs are 
numerous because of the wide range of property com- 
binations. However, in terms of the possible structural 
or engineering applications, the dependence of the 
elastic properties on the composition gradient is a very 
important factor. Using the Young's modulus as an 
example, if the component materials' Y oung's modu- 
lus values are known, then a rule of mixtures can be 
applied to determine the Young's modulus of the 
FGM. The Young's modulus values reported for 
the A13Ni intermetallic compound differ markedly. 
For example, Hertzberg et al. [2] reported 
E = 131-152GPa; Grabel and Cost [4] reported 
E = 215 GPa. The difference in the values appears to 
be rented to the measurement technique employed 
and/or the phase crystallography. Thus, it is necessary 
to resolve this discrepancy in the Young's modulus of 
the A13Ni second phase. There are many methods for 
measuring the Young's modulus; measurement of the 
Young's modulus by a forced resonance technique is 
one of the most accurate methods. As far as the 
authors are aware this is the first reported use of 
flexural forced-resonance frequency measurements to  
determine the Young's modulus of a FGM. 

In the present study, the effect of the composition 
gradient on the Young's modulus and internal friction 
of A1-A13Ni FGM specimens has been measured and 
analysed from the transverse free-free vibrations of 
rectangular beam specimens. The thickness of the 
rectangular beam specimens was varied to change the 
composition gradient of each specimen. 

0.38. Owing to the density difference between AlaNi 
and aluminium 20 mass % Ni (molten) and the differ- 
ence in the relative atomic masses of aluminium and 
nickel, each experiences a different centripetal force. 
Thus, a composition gradient is generated in the wall 
thickness direction. However, it is not known which 
factor is the dominant cause, i.e. the relative atomic 
mass difference or the phase-density difference. In any 
event, the volume fraction of AI3Ni phase is expected 
to increase towards the outside of the tube. 

2.2. Spec imens 
Initially, four ~ 90 mm long, square cross-section (6.1 
x6.1 mm z) bars were machined from the cast tube 
such that the thickness direction of the bar corres- 
ponded to the radial direction of the tube as shown in 
Fig. 1. The bars were reduced in thickness by machi- 
ning on an NC milling machine from the surface 
corresponding to the inside of the tube towards the 
outside surface of the tube. Thus, four rectangular bar 
specimens were obtained with nominal width x thick- 
ness dimensions of 6 x 6, 6 x 5, 6 x 4 and 6 x 3 mm e, 
respectively. Hereafter, they are referred to as the 6, 5, 
4 and 3 mm specimens, respectively. The accurate 
dimensions for each specimen are tabulated in Table I. 
The morphology of the A13Ni second phase and the 
composition gradient in the specimens were character- 
ized by optical microscopy of metallographic samples 
prepared by standard metallographic polishing tech- 
niques. 

2.3. Exper imental  apparatus for measur ing 
Young ' s  modu lus  

The apparatus used for the dynamic measurement of 
Young's modulus comprised conventional compon- 
ents arranged as shown schematically in Fig. 2. The 
sample is suspended in cotton-thread loops attached 
to the driver and detector, respectively. The loops are 
positioned 4 mm outside (or inside) the nodes cor- 
responding to the fundamental flexural vibration 

2. E x p e r i m e n t a l  p r o c e d u r e  
2.1. Materials 
F G M  was made by applying the centrifugal method 
[3] to an ingot of commercial purity A1-20 mass % Ni 
master alloy. The ingot was melted under an argon gas 
atmosphere at 890 ~ and then cast into a 90 mm long 
thick-walled tube with an outer diameter of 90 mm 
and a wall thickness of 10mm. The custom-made 
mould was rotated at a speed such that the molten 
metal experienced an acceleration equivalent to 23 
times the gravitational acceleration. The crystal struc- 
ture of A13Ni is D0/o (Prima) type and the unit cell size 
is 0.660 x 0.735 x 0.480 nm [5]. The relative atomic 
masses of aluminium and nickel are 26.98 and 58.7, 
respectively; thus, the density of A13Ni is calculated to 
be 4000 kg m-3, which is greater than the density of 
aluminium (2700 kgm-3). The theoretical volume 
fraction of AI3Ni in the master alloy is approximately 

X = t l t ~  I 

Neutral X = 0 
to = 6.1 axis; y = 

~ ~ Outer 
I j ' -  surface 

of tube 

Figure 1 Schematic representation of FGM tube cross-section and 
showing the coordinate system used. 
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TABLE I Summary of measured specimen property values used 
for analysis 

Specimen 

6 mm 5 mm 4 mm 3 mm 

Thickness (mm) 6.10 5.02 4.05 3.01 
Width (ram) 6.10 6.10 6.01 6.29 
Length (mm) 89.90 90.14 90.05 90.03 
Mass (g) 10.518 8.724 7.031 5.490 
Average 3144 3161 3208 3221 
density (kgm 3) 
Resonant 4.111 3.409 2.774 2.077 
frequency (kHz) 
Q-i (10-3) 1.50 2.13 2.25 2.66 

Speaker 
driver Cartridge High pass filter 

detector cut off freq. 1 kHz 

, ~ S p e c i m e n  ] ........... A.C. RMS 
'~ ............................................................ vo tmeter 

Frequency[ 1 
c~ 

Audio I IFunction / 
amplif ierl ,generator ] FDigital stora-~--] [ 

] oscilloscope I [ 
/ 7I'ol 

Figure 2 Block diagram of apparatus for determining Young's 
modulus and internal friction. 

resonance frequencies is well known and involves the 
solution of the differential equations for simple ben- 
ding of a bar [7, 8]. The resonance frequency of a 
specimen, when the vibrational motion is transverse to 
the specimen's longitudinal axis and both ends of the 
specimens are unconstrained, is given by 

(in) 2 = ( k , )*EIg / (2n )4oSL*T ,  (2) 

where f .  is the resonant frequency of the nth vibra- 
tional mode, E the Young's modulus in the longitud- 
inal axial direction, I the second moment of a finite 
area or moment of inertia, g the acceleration due to 
gravity, 9 the density, S the cross-sectional area, L the 
specimen length, T, the correction factor, and k, the 
solutions of 

cos(k.)cosh(k.)  = 1 (3) 

which are, namely, k o = 0, kl = 4.7300, kz  = 7.8532, 
k 3 = 10.9956, k4 = 14.137 and so on. The correction 
factor, T,, for the fundamental mode of flexural vibra- 
tion is given approximately [9] by 

T 1 --- 1 + 6.585(1 + 0.0752v + 0.8109v2)( t /L)  2 

- 0 .868(t /L)* - [8.340(1 + 0.2023v 

+ 2.173v2)( t /L)4]/[1  + 6.338(1 + 0.14081v 

+ 1.536v z) ( t /L) z] (4) 

where t is the specimen thickness and v is Poisson's 
ratio. The fundamental flexural vibration mode was 
employed in the present study and v = 1/3 was as- 
sumed in the analysis because Poisson's ratio has little 
influence on the results. 

mode, i.e. at 0.224L and 0.776L where L is the speci- 
men length. The constant output amplitude of the 
variable frequency oscillator is amplified and then sent 
to the driver. The frequency range 1-10 kHz is scan- 
ned until the driving frequency corresponding to one 
of the mechanical resonance frequencies of the speci- 
men is determined. 

The internal friction was determined by the reson- 
ance peak-width method in a simple manner [6]. The 
amplitude of the vibrational response is a maximum 
when the driving frequency and the natural resonant 
frequency of the specimen are equal, but decreases 
symmetrically about the resonant frequency to almost 
zero when the driving frequency is higher or lower 
than the resonant frequency. Thus, the internal fric- 
tion at the resonant frequency, fo, is given by 

Q-1 = Af/31/2fo" (1) 

where Af  = f u -  fL and fu and fL are the driven fre- 
quencies above and belowfo, respectively, at which the 
vibrational amplitude is half that at fo. 

3. Dynamic determination of Young's 
modulus 

3.1. C o n v e n t i o n a l  e q u a t i o n  for  Y o u n g ' s  
m o d u l u s  

The method of obtaining the Young's modulus of 
solid bodies from a knowledge of their mechanical 

3.2. M o d i f i c a t i o n  of  t heo re t i ca l  r esonan t  
f r e q u e n c y  e q u a t i o n  

The microstructure of the material produced and used 
in this paper can be idealized as a dispersed particu- 
late-reinforced metal matrix composite in which the 
distribution of particles is inhomogeneous, producing 
a composition gradient in the transverse thickness 
direction. In order to apply "the above theoretical 
equation to such an inhomogeneous material system, 
the equation parameters which will be affected by the 
composition gradient must be identified. This has 
been done in the Appendix, which identifies E, I and p 
as the affected parameters. In the following analysis, it 
is assumed that the parameters E and p obey a simple 
rule of mixtures and are functions of the normalized 
position, X, in the thickness direction, where X = 0 
and X = 1 denote the outer and inner surface of the 
F G M  tube, respectively, as shown in Fig. 1. 

Many equations describing the elastic moduli of 
composite materials have-been reported; see, for ex- 
ample, [9]. However, a discussion of the relative 
merits of the various equations is not the aim of this 
paper. In the present work, the dependence of the 
F G M Young's modulus on composition is estimated 
by applying a simple rule of mixtures, as follows 

EFGM = Era(1 -- Vp) + EpVp (5) 

where Vp is the volume fraction of particles at position 
X, and Em and Ep are the Young's moduli of the 
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matrix phase and the particulate phase, respectively. It 
is necessary to find out the position of the neutral axis 
or plane of bending which satisfies the following rela- 
tionship for any transverse section 

~s~dS = ~sEFGMedS 

= YsEFoM(-- y/R)dS 

= 0 (6) 

where y is the distance from the neutral axis or neutral 
plane (at which cy = 0) in the transverse section as 
shown in Fig. 1 and R is the radius of curvature which 
is constant. The condition that the neutral axis passes 
through the centroid of the transverse section is 

SsEF~MydS = 0 (7) 

Thus, we can calculate the E1 value as 

E1 = ~sEFGMy2dS (8) 

We can also calculate the PFOM in the transverse 
direction by again applying the rule of mixtures 

PFGM = Pm { 1 -- Vp} -}- pp Vp (9) 

where Pm and pp are the densities of the matrix and the 
particulate phase, respectively. Then, we can calculate 
the mean value of 9 as 

1/0 P = t PFoMdt (10) 

where t is the thickness of specimen. By substituting 
for EI from Equation 8 and for p from Equation 10 in 
Equation 2, the resonant frequency, f,, of the F G M  
specimen can be calculated. 

Clearly when both" Ep and E~, are unknown, f ,  
cannot be calculated from Equation 2. However, iff,  is 
measured experimentally, then E can be determined 
provided the other parameters are known. Thus, if 
either Ep or E m is known or measured, then E m or Ep, 
respectively, can be calculated from Equation 5 as- 
suming Vp is known. In the present work, Em is known, 
and Vp, PFOM and f ,  are obtainable experimentally; 
thus, Ep can be calculated. 

4.  R e s u l t s  
4.1. Compos i t ion  gradient 
The thinnest specimen is expected to possess a smaller 
composition gradient and a higher volume fraction of 
A13Ni second phase. The distribution profiles of the 
AlaNi second phase in the aluminium matrix were  
obtained by quantitative optical microscopy. Optical 
micrographs of the second phase (A13Ni) morphology 
and distribution in specimens with X = 0.39 and 
Vp = 0.38 and with X = 0.8 and Vp = 0.26 are shown 
in Fig. 3a and b, respectively. The shape of the A13Ni 
second-phase particles varies from elongated to al- 
most rectangular or square, while their sizes (i.e. dia- 
meters)  are in the range of 30-150 txm. The speci- 
mens exhibit a composition gradient only in the thick- 
ness or transverse direction, i.e. radial direction of the 
tube as expected. The volume fractions of A13Ni phase 
as determined from each of the micrographs are plot- 
ted in Fig. 4 as a function of specific thickness; that is 
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Figure 3 Optical micrographs showing the particle morphology 
and distribution of the A13Ni second phase in the aluminium matrix. 
The radial direction is from bottom to top. (a) X = 0.39 and 
38 vol % A13Ni, (b) X = 0.80 and 26 vol % A13Ni. 
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Figure 4 Volume per cent A13Ni , Vp~ as  a function of specific 
thickness based on the 6 mm specimen. The bars indicate the 
effective specific thickness range of the other specimens. The plotted 
points are the measured Vv% values and solid line represents the 
best-fit curve through the experimental data. 

the thickness of the specimen normalized with respect 
to the 6 mm specimen's thickness of to = 6.10 mm 
where X = 0 and 1 correspond to the outer surface 
and inner surface of the tube, respectively, as shown in 



Fig. 1. Therefore, the specific thickness for the 3, 4 and 
5 mm nominal thickness specimens is X = 0.493, 
0.664 and 0.823, respectively. 

The A13Ni volume fraction distribution profile ob- 
tained is amenable to simple numerical analysis and is 
therefore described by 

Vp% = f ( X )  = -- 8.78(X + 0.489) 3 + 44.20 (11) 

which is the best-fit equation and is plotted in Fig. 4 as 
a solid line. The average volume per cent of A13Ni 
phase in the 6, 5, 4 and 3 mm specimens was 33.5%, 
36.4%, 38.5% and 40.3%, respectively. The differences 
between the average densities based on Equation 10 
employing Vp% values obtained from Equation 11 
and those listed in Table I are in the range 
0.10%-0.42%. Such small differences show that the 
composition gradient as described by Equation 11 is 
reasonably and sufficiently accurate for the analysis. 

The AI3Ni particle sizes were found to be dependent 
upon their location within the tube thickness. The 
A13Ni particle-size distributions in three sectioned 
regions of the 6 mm specimen, which coincided with 
the inner surface region, the interior and the outer 
surface region, respectively of the tube thickness, were 
determined. The number of particles were counted 
from 0 txm in size upwards in 10 Ixm wide bands, i.e. 
0-10 ~tm, 10-20 Ixm, etc. The percentages in each band 
are shown in Fig. 5 by means of a histogram for each 
region. The peak of the distribution profile for the 
outer surface region is shifted towards small particle 
sizes. The mean particle sizes within the inner surface, 
interior and outer surface regions are 40, 50 and 
70 ~tm, respectively. 

4.2. Composition gradient dependence of 
Young's modulus 

The flexural vibration resonant frequency decreased 
with decreasing specimen thickness. The measured 
resonant frequency for each specimen is given in Table 
I. Using Equations 5 and 2, a series of calculations 
were made to determine the resonant frequencies cor- 
responding to F G M  values dependent upon assumed 
E m and Ep values in conjunction with the gradient Vp 
values for the 3, 4, 5 and 6 mm specimens. The as- 
sumed values for the Young's modulus of AI3Ni were 
in the range Ep = 80-220 GPa, while the Young's 
modulus of the aluminium matrix was taken as 
E m = 71 GPa. Thus, each assumed Ep value corres- 
ponds to a calculated resonant frequency, and for each 
specimen there is a set of such data. These data are 
plotted as Young's modulus of A13Ni against calcu- 
lated F G M  resonant frequency by the solid graph 
lines in Fig. 6. The greater the assumed Ep value the 
greater will be the calculated F G M  resonant fre- 
quency. The Young's modulus of A13Ni can now be 
obtained directly from Fig. 6 if each specimen's experi- 
mental resonant frequency is plotted on the appropri- 
ate graph line. 

The average Young's modulus of the AI3Ni phase 
was found to be Ep = 140 GPa  and the difference 
between the measured and calculated resonant fre- 
quencies for Ep = 140 GPa  was less than 0.2%. There- 
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Figure 5 Histograms comparing the A13Ni particle-size distribu- 
tion within three regions in the 6 mm specimen. The number of 
particles in each 10 Ixm band is divided by the total number of 
particles sized. 
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Figure 6 Relationship between the calculated EFG M resonant fre- 
quency and the assumed Young's modulus of AI3Ni, Ep. The plotted 
points are the experimental resonant frequency values obtained for 
each specimen. 

fore, the Young's modulus of A13Ni is determined to 
be 140 GPa  on the assumption of a rule of mixtures 
applying to a series of A1-A13Ni F G M  specimens with 
different average volume fractions of A13Ni. This value 
compares well with the reported values of 
131-152 GPa  [2]. Using Ep = 140 GPa, the calcu- 
lated Young's modulus variation within the 6 mm 
specimen as a function of specific thickness, and hence 
Vp, is shown in Fig. 7; the maximum and minimum 
values are 100.8 and 81.5 GPa, respectively. The Cor- 
responding Young's modulus variations for the 5, 4 
and 3 mm specimens, with specific thickness ranges of 
X = 0-0.823, X = 0-0.664 and X = 0-0.493, respect- 
ively, are indicated by the horizontal lines in Fig. 7. 
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Figure ? Calculated variation in Young's modulus as a function of 
specific thickness for the 6 mm thickness specimen. The bars indi- 
cate the specific thickness range of the other specimens. 

4 . 3 .  I n t e r n a l  f r i c t i o n  m e a s u r e m e n t  
The relationship between the internal friction, Q-1,  
and the mean volume fraction of A13Ni particles is 
shown in Fig. 8 and tabulated in Table I. The meas- 
ured internal friction must be the average value for 

each F G M  specimen because of the composition gra- 
dient within each specimen. The internal friction of the 
present F G M  material increases with increasing mean 
volume fraction of A13Ni. The internal friction of a 
material is affected by microstructural features such as 
point defects, second phases in solids, dislocations and 
interfaces, all of which contribute to the energy dis- 
sipation occurring within the material when it is 
strained elastically. The number density of these fea- 
tures increases with increasing mean volume fraction 
of A13Ni in the FGM.  

5 .  D i s c u s s i o n  
The mean Young's moduli for the 6, 5, 4 and 3 mm 
specimens were calculated, using Equation 5, to be 
94.1, 96.1, 97.6 and 98.8 GPa,  respectively, as shown in 
Fig. 8. If the materials are assumed to be homogen- 
eous, then direct calculation of E from Equation 2 
gives values of 92.8, 95.5, 96.8 and 98.3 G P a  for the 6, 
5, 4 and 3 mm specimens, respectively. As the com- 
position gradient within the specimen increases, so 

does the calculation error caused by assuming a 
homogeneous composition and using Equation 2 dir- 
ectly. Hence, a rule of mixtures should be used to 
calculate the average Young's modulus rather than the 
specimen resonant frequency-Young's modulus rela- 
tionship when an F G M  is under investigation. 

In the present study, the effect of dislocation and 
second phase-matr ix  interface number density on the 
internal friction behaviour of the F G M  has been 
considered. In the quantitative evaluation of the inter- 
face number density, it is assumed tha t  the 
intermetallic's second phase is of spherical or cubic 
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Figure 9 Volume per cent of A13Ni particles (Vp%), mean values of 
particles size, do, interface density, A, and increment of dislocation 
density, Ap, as a function of specific thickness. 

morphology, enabling easy calculation of the inter- 
facial area per unit volume, i.e. the interface number 
density, p~ (m-1). The dislocation density (m -2) must 
be increased by thermal misfit strain according to 
Taya and Arsenault [10] or Kim et al. [1!]  who 
applied such an analysis to metal matrix composites. 
If a prismatic punching model [10] is assumed to be a 
mechanism for generating dislocations due to thermal 
strains in the present material, the dislocation density 
varies as Vp/[(1 - Vp)do] , where d o is the mean dia- 
meter of the particles. This relationship shows that the 
dislocation density increases with increasing second- 
phase volume fraction and particle size. The interface 
number density also depends on the second-phase 
volume fraction and particle size as Vpd 2. 

The mean values of the particles' size, and hence the 
interface density and dislocation density are calcu- 
lated on the basis of these second-phase particle size 
distributions shown in Fig. 3 and their volume frac- 
tions. These parameters are plotted as a function of 



specific thickness in Fig. 9 and are represented by 
curves. As the volume fraction of A13Ni increases, the 
mean particle diameter is decreased and the interface 
density and dislocation density are increased. Like- 
wise, the internal friction increases with increasing 
volume fraction of A13Ni. However, the real disloc- 
ation density, P, is given by p = Po + A9 where Po is 
the dislocation density in the matrix alloy ( ~  5 
x 10 i2 m - 2 )  [11]. In the present work, the value ofA 9 
is relatively small compared with Po, unlike the case 
referred to by Taya and Arsenault [10] and by Kim 
et al. [11] and the effect of Ap on the internal friction 
of the FGM may be ignored due to the relatively large 
second-phase particles observed. Thus, it may be con- 
cluded that the internal friction increases with increas- 
ing A13Ni volume fraction due mainly to the resultant 
increase in the interface density rather than the disloc- 
ation density. 

Appendix. Basis of Equation 2 
l%r the simple bending of a beam, the strain, a, is given 
by 

e = - y / R  (A1) 

where R is radius of curvature of the neutral axis of the 
beam and y is the distance from the neutral axis. Thus, 
stress, cy, is written as 

O" : EFGMg 

---- - -  EFO M y/R (A2) 

Then, the applied bending moment, M, is 

M = - SsYCydS 

= (1/R)~sEFo M y2dS (A3) 

where S is the cross-sectional area of the transverse 
section. In general, a radius of curvature, R, in an x - y  
coordinate system is given by 

6. Conclusions 
In the present study, the effect of a composition 
gradient on the Young's modulus and internal friction 
of an A1-A13Ni functionally gradient material (FGM) 
has been determined by the measurement of flexural 
resonant frequencies using a forced-resonance tech- 
nique on four rectangular bar specimens of differing 
thickness and hence composition. The results of the 
work are summarized below. 

1. The average volume fraction of the granular 
A13Ni second phase in an A1-A13Ni,FGM manufac- 
tured by a centrifugal casting method was found to be 
33.5, 36.4, 38.5 and 40.3 vol % for the nominal 6, 5, 4 
and 3 mm thickness specimens, respectively. 

2. The Young's modulus of the A13Ni second phase 
was determined from the measured resonant frequen- 
cies as 140.6, 140.4, 139.2 and 139.1 GPa for the 
nominal 6, 5, 4 and 3 mm thickness specimens, re- 
spectively, by applying a rule of mixtures. The average 
Young's modulus of the A13Ni second phase is thus 
140 GPa. 

3. The Young's modulus variation within the 6 mm 
thick bar specimen ranged from a maximum of 
100.8 GPa to a minimum of 81.5 GPa, corresponding 
to an A13Ni content of 43.2 and 15.2 vol %, respect- 
ively. 

4. The internal friction of the FGM increases with 
increasing mean volume fraction of A13Ni and appears 
to depend mainly on the resultant increase in the 
interface density. 
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1/R = (d2y/dx2)/[1 + (dy/dx)2] 3/2 

d2y /dx  2 (A4) 

because [1 + (dy/dx)2] 3/2 ~ 1 since (dy/dx)  2 .~ O. 

Substituting Equation A4 into Equation A3, we get 

M = (d2y/dx 2) IsEFGMy2dS (AS) 

However, a shear force, F, is also acting during the 
bending of the specimen. This condition is written as 

~?F/~x = (t?2y/& 2) oS/g (A6) 

where t is time, p is the density and g is the accel- 
eration due to gravity. Now 

F = -- t?M/~?x (A7) 

and so substituting Equation A5 for M in Equation 
A7 and differentiating results in 

F = -- IsEFau y2dS (day/dx  3) (AS) 

Now substituting Equation A8 for F in Equation A6 
and differentiating gives 

-- IsEFGM Y 2dS (d4y/dx 4) = (d2y/dt 2) pS/9 

By rearranging and multiplying through by 9/pS,  this 
equation can be rewritten as 

(d2y/dt  2) + (d4y/dx  4) { IsEFoMy2dS}g/(pS)  = 0 

(A9) 

The solution of Equation A9 can be expressed in the 
form of Equation 2 for homogeneous materials. Not- 
ing that I = Ssy2dS where I is the moment of inertia, it 
is clear that a gradient in the composition of the FGM 
across the transverse section (i.e. y direction) will affect 
EFGM, I and p. The t e r m  {IsEFGM y2dS}a/ (pS)  in Equa- 
tion A9 is calculated considering a gradient in the 
composition through Equations 8 and 10, and then 
solved in the same manner as for homogeneous mater- 
ials. Thus, the application of Equation 2 to an FGM 
has to take this into account, as discussed in Section 
3.2. 
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